Innovations for Conversion of Biomass to High Value Chemicals by Photocatalytic Process

Takashi Sagawa

Navadol Laosiripojana Verawat Champreda Surawut Chuangchote

NSTDA Integrated biorefinery research network

IBL core research themes

National Center for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Paholyotin Road, Klong 1, Klong Luang, Patumthani 12120, THAILAND

Research Themes

Theme 1: Sugar Conversion

Development of TiO₂ Fabrication with CTAB Surfactant

NS

SEM and FESEM images of TiO₂ photocatalysts synthesized by different concentrations of CTAB

Photocatalytic Activity of TiO₂ Modified by CTAB

NSTDAT JGSEE The Joint Graduate School of Energy and Environmen

The results of development of TiO₂ fabrication with CTAB surfactant

Photocatalytic conversion of glucose with TiO₂ synthesized with different concentrations of CTAB in MW.

Product yields of photocatalytic conversion of glucose with TiO₂ photocatalysts synthesized by different concentrations of CTAB

Zeolites

Zeolites are hydrated aluminosilicate minerals made from interlinked tetrahedral of alumina (AlO₄) and silica (SiO₄).

Advantages of Zeolites

- ✓ Improved selectivity
- ✓ High activity
- ✓ Excellent absorption ability

Structure of zeolite A (a) and faujasite-type zeolites X and Y (b) formed by sodalite cages

SEM images (30000x) of ZeY, TiO₂ (5%)/ZeY(95%), TiO₂ (15%)/ZeY(85%), TiO₂ (30%)/ZeY(70%), TiO₂ (45%)/ZeY(55%), and TiO₂.

The results of modification of TiO₂ with zeolite supporter

Photocatalyst	S _{BET} (m²/g)
ZeY	590.76
TiO ₂ (5%) /ZeY(95%)	588.36
TiO ₂ (15%) /ZeY(85%)	524.41
TiO ₂ (30%) /ZeY(70%)	494.57
TiO ₂ (45%) /ZeY(55%)	419.44
TiO ₂	34.38

NSTDA THE JOINT OF A SCHOOL OF

The results of modification of TiO₂ with zeolite supporter

Modification of TiO₂ with Zeolite Supporters NS The results of modification of TiO₂ with zeolite supporter Photocatalytic conversion of glucose **Product Yields** 50 100 Formic acid 45 90 TiO2(15%)/SiO2(85%) Gluconic acid TiO2 40 80 Arabinose Xylitol 35 70

TiO₂ Nanofiber Photocatalysts

SEM images of TiO_2 nanofibers from co-axial horizontal electrospinning at inner flow rate 0.5 ml/h at magnifications of (D1) 10.0k, (D2) 50.0k and (D3) 100.0k, inner flow rate 1.0 ml/h at magnifications of (E1) 10.0k, (E2) 50.0k and (E3) 100.0k and inner flow rate 1.5 ml/h at magnifications of (F1) 10.0k, (F2) 50.0k and (F3) 100.0k.

Yields of formic acid, gluconic acid, arabinose, and xylitol from photodecomposition of glucose

Theme 2: Lignin Conversion

Photocatalytic Conversion of Lignin to High-value Products

hv

Composition of the biomass

http://www.psb.ugent.be/bio-energy/313-lignin

Effect of kraft lignin concentration on photocatalytic conversion of kraft lignin (reaction conditions: 1g/L of P25, 100/0 v/v of water to ACN and 400 W of UV-lamp).

Photocatalytic activity

NS

The Joint Graduate School

Products from Conversion of Lignin

NST

GC-MS spectra of hydrocarbon compounds derived from photocatalytic conversion of kraft lignin catalyzed by P25 under UV irradiation for 2 and 5 h.

Chemicals from glucose conversion

Products	Price (THB)/kg	Applications
Gluconic acid	337	acidity regulator
Arabinose	1685-5055	sweetener
Xylitol	33.7-168.5	sweetener
Formic acid	16.513-18.53	preservative and antibacterial agent, use in cleaning products, dyeing and finishing textiles products, and use in direct formic acid fuel cell (DFAFC)

NS

Chemicals from lignin conversion

Products	Price (THB)/kg	Applications
2-methyl naphtalene	33.7-50.55	textile dyeing, printing and metal surface water treatment and chelating, used in organic synthesis,pesticide, pharmaceutical and dyne intermedite
4-hydroxy-benzaldehyde	33.7-3370	pharmaceutical intermediate, antiallergic agent blood system agent and anesthetic agents
Vanillin	33.7-505.5	synthetic flavor and fragrance
4'-hydroxy-acetophenone	3370	used in the manufacture of medicinal reagent

Theme 3: Biomass Pretreatment

Photocatalytic Pretreatment of Biomass

Concept of Photocatalytic Pretreatment of Biomass

Photocatalytic Pretreatment of Biomass

Mercury Lamp

Water Inlet

Blank Pretreatment

(1)

Pretreated suspension filtrated by vacuum filter

NSTD

Further product analysis by HPLC

2 Photocatalytic Pretreatment

Dilute with DI water until neutral Solid Product (neutral)

Further enzymatic hydrolysis

Photocatalytic Pretreatment of Biomass

Overall Research Outputs

Overall Research Outputs

Synthesized Photocatalysts

TiO₂ nanowires

High-value chemicals

- Xylitol
- Gluconic acid
- Arabinose
- Formic acid

• Vanillin

NSTE

- 2-methyl naphtalene
- 4-hydroxy-benzaldehyde
- *Etc.*

Electrospinning

NST

Electrospinning is a technique to produce the polymer nanofibers from a wide variety of materials and versatile applications. Different methods of electrospinning:

Electrospinning

Experimental setup

Internal factors:

- Type of polymer,
- Type of solvent,
- Solution concentration (viscosity),
- Solution conductivity, etc.

External factors:

- Collecting distance,
- Applied voltage,
- Solution flow rate,
- Ambient temperature, humidity, etc

Balance levels of inner/outer nozzle end

	SEM Images		TEM Images		
Nanofibers	PAN	PAN/PMMA	PAN/PMMA		
Nozzle	Single nozzle	Coaxial nozzle	Inward	Normal	Outward
Illustration					
As spun nanofiber (Before calcination)	<u>5 μm</u>	<u>5 μm</u>	5 <u>00 nm</u>	5 <u>00 nm</u>	50 <u>0 nm</u>
Carbon Nanofiber (After calcination)	<u>2 μm</u>	<u>2μm</u>	2 <u>00 m</u> m	2 <u>00 nm</u>	2 <u>00 nm</u>

Project Outputs

Exchange Researches

Name	Exchange Period	Research Topic
Ms. Kamonchanok Roongraung	18 Feb 2016 – 19 July 2016	Nano-scaled Photocatalysts for Energy Applications
Mr. Suriyachai Nopparat	28 Sep 2016 – 31 May 2017	Modification of Visible Light Photocatalytic Activity for Biomass Conversion to Value-added Chemicals
Ms. Nutsanun Klueb-arb	14 Nov 2016 - 23 Dec 2016	A Study of Reaction Pathways in Photocatalytic Conversion of Sugars to High-Value Fuels and Chemicals
Ms. Puangphen Hongdilokkul	14 Nov 2016 - 23 Dec 2016	Photocatalytic Upgrading of Lignin to High Value Products by Nanostructured Catalysts
Ms. Kanyanee Sanglee	6 Feb 2017 – 17 Mar 2017	Development of Visible-Light Irradiation Responded Metal Oxide for Photocatalytic and Photovoltaic Applications

NSTD

FF

The Joint Graduate Sch

Project Outputs

Papers

- Navaporn Kaerkitcha, Surawut Chuangchote, and Takashi Sagawa (2016) "Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends," *Nanoscale Research Letters*, 11(1), 1-9.
- Witchaya Arpavate, Surawut Chuangchote, Navadol Laosiripojana, Jatuphorn Wootthikanokkhan, and Takashi Sagawa (2016) "ZnO Nanorod Arrays Fabricated by Hydrothermal Method Using Different Thicknesses of Seed Layers for Applications in Hybrid Photovoltaic Cells," *Sensors and Materials*, 28(5), 403-408.
- Kamonchanok Roongraun, Navadol Laosiripojana, Surawut Chuangchote (2016) "Development of Photocatalytic Conversion of Glucose to Value-added Chemicals by Supported-TiO₂ Photocatalysts," Applied Mechanics and Materials, 839, 39-43.
- Mathana Wongaree, Siriluk Chiarakorn, Surawut Chuangchote, and Takashi Sagawa (2016) "Photocatalytic Performance of Electrospun CNT/TiO₂ Nanofibers in a Simulated Air Purifier under Visible Light Irradiation," *Environmental Science and Pollution Research*, 23, 21395-21406.

Patent

• Xylitol Production from Glucose and Xylose Using Titanium Dioxide Photocatalyst," Patent Submission No. 1401007893.