

Progress report on

"Liquefaction study in Chiang Rai Northern Thailand" (Geotechnical Earthquake Engineering)

Tetsuo Tobita, Kansai Univ. (former Kyoto Univ.)

Suched Likitlersuang, Chulalongcorn Univ.

Suttisak Soralump, Kasetsart Univ.

Lindung Zalbuin Mase, Ph. D candidate, Chulalongcorn Univ. (supported by the AUN SEED-NET program)

Objectives

- To investigate liquefaction occurred in Northern Thailand (NT) (seismic records, field investigations)
- 2. To understand subsurface soil conditions in NT (borehole and microtremor observations)
- 3. To evaluate structural vulnerability against liquefaction in NT (site response analysis by FEM, FDM, or physical model testing)
- 4. To contribute to build safer and securer society through geotechnical earthquake engineering study

Sand boils observed in Mae Sai, Chiang Rai, Thailand after 2011 earthquake

Introduction

- Earthquake on March 24, 2011
- Magnitude of 6.8 Mw
- Hit Border of Thailand-Myanmar
- Liquefactions near the border
- Liquefaction study should be one of the priority issues.

Approx. 30km:Epicenter – Mae Sai

Fig.3 Acceleration record of Mae Sai Station during the 6.8 M_w earthquake on 24 March 2011⁶⁾.

Liquefaction Study in Northern Thailand is started

Microtremor observation in Northern Thailand (Chiang Rai Province) (March, 2016)

Microtremor observation in Mae Sai (in March 2016) (@ expected borehole locations)

Field evidence of liquefaction in Mae Sai, Chiang Rai, Thailand

- Dominated by Sandy Soils
- Small value of (N1)60
- Fines Content less than 12%
- Higher Ground Water Level
- Liquefaction is probable

H/V spectrum by microtremor survey in Mae Sai

Comparison of the calculated HVSR and 2011 HVSR recorded at the closest station to epicenter

Inversion of HVSR (comparison of measured Vs and calculated Vs)

10

Local site observation in Mae Lao (in March 2016)

H/V spectrum by microtremor survey in Mae Lao

Pha

Epicenter

Fault

Numerical analysis

METHODOLOGY

- Preliminary Analysis (desk study) : soil type, interpretation of soil layer, SPT value, Vs, and empirical analysis
- Ground motion of 2011 earthquake recorded at the closest station i.e. Mae Sai, with PGA maximum of 0.2g
- 1D Finite Element Effective Stress Model proposed by Elgamal et al. (2006)
- Predict the behavior of soil liquefaction, time histories analysis

Fig.3 Acceleration record of Mae Sai Station during the 6.8 M_w earthquake on 24 March 2011⁶⁾.

METHODOLOGY

• Effective Stress Model (Elgamal et al., 2006)

Effective stress path of shear strain model for sand under cyclic mobility (Elgamal et al., 2006)

Stress-strain curve of shear strain model for sand under cyclic mobility (Elgamal et al., 2006)

Multi-yield surface of kinematic hardening yield locus in principal stress and deviatoric plane (after Prevost (1985) Parra (1996) and Yang (2000)

1D site response analysis

вн	Material	Thickness	γ	С	ø	FC	permeability (k)	Vs	Ko	p' ref	γmax	Liq parameter	Contraction Parameter		Dilation Parameter	
		(m)	(kN/m3)	(kPa)	(°)	(%)	(m /s)	(m/s)	(-)	(kPa)	(%)	Liq 1	c1	<i>c2</i>	d1	d2
CR-1	CL	2.00	1.30	18.00	-	80	1.10E-09	99	0.67	50	5	-	-	-	-	-
	SP-SM	3.00	1.70	0.30	28	8	6.60E-05	237	0.53	80	5	0.025	0.300	0.200	0.000	10
	SP-SM	5.50	2.00	0.30	29	8	6.60E-05	421	0.52	80	5	0.010	0.060	0.500	0.400	10
	SM, SP-SM, SM-GM	19.50	2.10	0.30	30	11.13	6.60E-05	472	0.50	80	5	0.003	0.010	0.600	0.600	10
	SP-SM	9.00	1.70	0.30	0	21	6.60E-05	195	1.00	80	5	0.025	0.300	0.200	0.000	10
	SP-SM	7.50	1.70	0.30	29	26	6.40E-05	259	0.52	80	5	0.025	0.300	0.200	0.000	10
	SM-GM,GP	2.50	2.00	0.30	9	19	6.60E-05	266	0.84	80	5	0.010	0.060	0.500	0.400	10
CR-2	SC	1.50	2.00	3.00	29	18	6.70E-05	273	0.52	80	5	0.010	0.060	0.500	0.400	10
	SM	3.00	2.00	0.50	19	16	6.90E-05	600	0.67	80	5	0.010	0.060	0.500	0.400	10
	SC	6.00	2.00	3.00	30	21	7.10E-05	634	0.50	80	5	0.010	0.060	0.500	0.400	10
	CL	0.50	1.40	20.00	-	94	1.10E-09	728	0.68	50	5	-	-	-	-	-
CR-3	SP-SM	3.00	1.70	0.30	28	7	6.60E-05	140	0.53	80	5	0.025	0.300	0.200	0.000	10
	SP-SM	12.00	2.00	0.32	29	9	6.90E-05	324	0.52	80	5	0.010	0.060	0.500	0.400	10
	SP-SM,SM-GM	15.00	2.10	0.25	30	9	7.20E-05	736	0.50	80	5	0.003	0.010	0.600	0.600	10

Input material parameters

Fig.7 Liquefaction resistance curve comparison for all liquefiable layers from element simulations

CR-3 (at 1.5 m)

CR-3 (at 13 m)

Pore water pressure and settlement due to liquefaction

Maximum-minimum excess pore water pressure ratio

Maximum excess pore water pressure ratio during and after shaking

Minimum excess pore water pressure ratio during and after shaking

Conclusions (Numerical analysis)

Due to 24 March 2011 earthquake or Tarlay earthquake;

- Northern Thailand experienced heavy damage and catastrophic hazard. Liquefaction might be one of the major causes of disaster.
- Liquefaction was probable at upper 14 m layer of SP and SM with lower SPT-N value at CR-3 site.
- Based on the parametric studies, there are several factor influencing the excess pore water pressure ratio, such as fines content of soil type, and effective confining pressure.

Possible future direction

KG-R Geotechnical Database for Osaka area (SPT-N, soil classification, density, fines content with depth)

図9 関西地盤情報ライブラリー⁸⁾保存されている深度 分布図と本研究で対象とする範囲(赤色網掛け)

Distribution of borehole depths in KG-R database

図15 最下端深度分布

Thank you for your attention.

RESULTS and DISCUSSION

• Liquefaction duration

Liquefaction duration on liquefiable layer

Percentage of r. in sand laver.

Sito	Liquefaction Duration (s)					
Site	Maximum	Minimum				
CR-1	40	0				
CR-2	43	39				
CR-3	50	39				

• Percentage of total r_u on overall sand layers and impacted depth

<u> </u>				
Total r in overall sand layer (%)	Sites			
	CR-1	CR-2	CR-3	
$r_u \ge 1$	8.77	38.33	32.79	
$0.9 < r_u < 1$	5.26	18.33	19.67	
$0.8 < r_u < 0.9$	5.26	0.00	1.64	
$0.7 < r_u < 0.8$	3.51	0.00	6.56	
$0.6 < r_u < 0.7$	5.26	0.00	8.20	
$0.6 < r_u < 0.5$	3.51	0.00	13.11	
<i>r</i> _u <0.5	68.42	43.33	18.03	

Impacted depth based on r_u .

Impacted depth (m)	Sites			
impacied depui (iii)	CR-1	CR-2	CR-3	
$r_u \ge 1$	2.54	11.31	9.84	
$0.9 < r_u < 1$	1.53	5.41	5.90	
$0.8 < r_u < 0.9$	1.53	0.00	0.49	
$0.7 < r_u < 0.8$	1.02	0.00	1.97	
$0.6 < r_u < 0.7$	1.53	0.00	2.46	
$0.6 < r_u < 0.5$	1.02	0.00	3.93	
r _u <0.5	19.84	12.78	5.41	