The 2nd JASTIP-WP2 Annual Workshop Feb. 3, 2017(Pullman Bangkok Grande Sukhumvit Hotel)

Extension of Solvent Treatment Method Developed by SATREPS Program to ASEAN Region

Kouichi Miura

Institute of Advanced Energy, Kyoto University

Bundit Fungtammasan

JGSEE/King Mongkut's University of Technology Thonburi

Members of our group (tentative)

Hideaki Ohgaki, Proferssor, Institute of Advanced Energy, Kyoto University

- **Ryuichi Ashida**, Lecturer, Graduate School of Engineering, Kyoto University
- Janewit Wannapeera, Researcher, Institute of Advanced Energy, Kyoto University

Katsuyasu Sugawara, Professor, Akita University Nakorn Worasunarak, Assoc. Professor, JGSEE/KMUTT Suneerat Fukuda, Assoc. Professor, JGSEE/KMUTT

Japan-Thailand SATREPS Project

Development of clean and efficient utilization of low rank coals and biomass by solvent treatment

Dec. 20, 2013 – Dec. 19, 2018

Kouichi Miura Institute of Advanced Energy, Kyoto University

Bundit Fungtammasan

JGSEE/King Mongkut's University of Technology Thonburi

Purposes of the SATREPS Project

- 1. To establish a technology converting low rank coals and/or biomass wastes using a new method called "Degradative Solvent Extraction", which was developed by Kyoto University group, to raw material independent small molecular weight components called "Soluble" and Residue.
- 2. To develop technologies for utilizing Soluble and Residue effectively.
 - eg. Preparation of value added materials such as carbon fiber, clean fuel, chemicals, etc. Effective methods to combust/gasify Residue
- 3. To assist the development of human resources and research capabilities in Thailand by conducting joint research.
 - The technologies developed under cooperative researches will contribute to reduce the emission of global warming gases as well as environmental pollutants.
 - The technologies developed will be disseminated to ASEAN countries which need such technologies.

What is the

"Degradative Solvent Extraction"?

Apparatus and procedure

Raw materials used

Brown coal (Loy Yang)

Rice straw

Core technology is "Degradative Solvent Extraction"

The method dewaters and upgrades various low grade carbonaceous resources, producing high quality extract in high yield under mild conditions.

- Almost no heating value loss through the treatment
- Soluble and Deposit have raw material independent properties

Structure of Research and Development

Output 1: Upgrading of low rank coals and biomass by solvent treatment
Output 2: Production of new bio-fuel from biomass wastes and effective upgrading
Output 3: Production of high-grade carbon materials from the Solubles
Output 4: Combustion/gasification of upgraded fuels/residues

Cooperative Structure of our project

Japan

Head Investigator: Kouichi Miura Research fund: 178 million yen from JST

Kyoto University: Miura Gr. Kouichi Miura, Specially App. Prof. Hideaki Ohgaki, Prof Ryuichi Ashida, Assist. Prof. Motoaki Kawase, Prof. Taro Sonobe, Research Administrator Janewit Wannapeera, Dr. Trairat Muangthong-on, PhD cand.

Akita University: Sugawara Gr. Katsuyasu Sugawara, Prof. Takahiro, Kato, Assis. Prof. Kenji Murakami, Prof.

CRIEPI: Makino Gr. Hisao Makino, Dr. Kenji Tanno, Dr. Satoshi Umemoto, Dr. Atsushi Ikeda, Mr. Shiro Kajitani, Dr.

Kobe Steel Co. Ltd: Okuyama Gr Noriyuki Okuyama, Dr. Takuya Yoshida, Dr. Shigeru Kinoshia, Mr. Koji Sakai, Mr.

Thailand

Head Investigator: Bundit Fungtammasan Research fund: 300 million yen from ODA

JGSEE/KMUTT: Bundit Gr. Assoc.Prof. Bundit Fungtammasan Assoc.Prof. Sirintornthep Tawprayoon Assoc.Prof. Nakorn Worasuwannarak Assoc.Prof. Suneerat Fukuda Dr. Supachita Krerkkaiwan Ms. Sasithorn Buranatrevedhya Mr. Supachai Jadsadajerm Mr.Jaggapan Sanduang Ms.Thitima Sornpitak Mr.Kaweewong Wongaiyara

PTT-RTI, PTT Public Company Ltd: Arunratt Gr.

Arunratt Wuttimongkolchai, Ms. Suttipong Tunyapisetsak, Mr. Suchada Butnark, Dr. Anurak Winitsorn, Dr. Suriya Porntangjitlikit, Mr. Kornthape Prasirtsiripham, Mr.

Four research groups from Japan and two research groups from Thailand are involved in this project.

More than 30 researchers from academy and industry

M 💧 pt

12

Planned Schedule of Research and Development

	Schedule (from 2014 to 2018)														Group in charge							
Activity		2014 2015 2016 2017 2018												Japan	Thailand							
-		2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1	
Fask 1. Upgrading of low rank coals and biomass by solvent treatment																						
1.1 Production of Solubles from low rank coals and biomass using								\Rightarrow						1							КU	JGSEE
a batch autoclave																					KU	JOSEE
1.2 To optimize the production of Solubles										L											КU	JGSEE
from low rank coals and biomass																					KU	JOSEE
1.3 To characterize the properties of Solubles and Residues from										╘											κυ	JGSEE
low rank coals and biomass																		<u> </u>		ļ	ĸo	JUSEL
1.4 To design and construct the semi-continuous																					кs	PTT
extraction process (1 kg/h)														<u> </u>	<u> </u>						113	
1.5 Production of Solubles from low rank coals and biomass																					кѕ	РТТ
using the semi-continuous extraction process						<u> </u>														<u> </u>	113	
1.6 Conceptual process design for constructing a pilot plant of 10																				⊨⇒	кѕ	РТТ
ton/day																					K5	
Task 2. Production of new liquid biofuels from solubles	_				_				_													
2.1 Optimization of production of liquid biofuels using batch																					ĸu	JGSEE, PTT
reactor (5 L)								7							<u> </u>						KU	JUJLL, FII
2.2 Upgrading liquid products to liquid biofuels by																					AU	РТТ
hydroprocessing												,									AU	FII
2.3 Combustion test in gas turbine engine														1					<u> </u>		CRIEPI, KS	PTT
2.4 Cost estimation, feasibility study and scale-up plant (in case																				⊨⇒	кѕ	РТТ
of technical soundness)																					KJ	FII
Task 3. Production of high-grade carbonaceous materials f	rom	Solub	les																			
3.1 Characterization of Solubles as a raw material for high			1											1								
performance carbon materials																					KU	JGSEE
3.2 Design and construct a small apparatus producing carbon			1		1	1								1	1			1				10055
fiber/carbon black							-			-1											KU	JGSEE
3.3 Production of carbon fiber from Solubles							Π	-				-	-	Ì							KU	JGSEE
3.4 Design and construct a small continuous spinning apparatus														-						1	КU	JGSEE
(0.1 kg/h)															1					7	KU	JGSEE
3.5 Production of carbon fiber using a small continuous spinning																					КU	JGSEE
apparatus																				\rightarrow	KU	PTT
3.6 Conceptual process design for a pilot plant																				₽	KU	JGSEE
Task 4: Combustion/gasification of upgraded fuels/residues																						
4-1 Fundamental Examination of combustion/gasification																1						
behaviors of upgraded fuels/residues in TG																					CRIEPI,AU	JGSEE,PTT
4-2 Examination of combustion/gasification behaviors of																						JGSEE,PTT
upgraded fuels/residues in Entrained bed reactor																					CRIEPI,AU	JUSEE,PII
4-3 Examination of combustion behaviors of upgraded																					CRIEPI	
fuels/residues in Fluidized bed reactor										CRIEPI JOSE					JGSEE							

Preparation of carbon fiber from Soluble – Task 3 -

-20% of light fraction was removed by heat treatment

Spinning using a mono-hole continuous spinner at -200°C

Oxidation treatment in air at -300°C

Heat treatment at -800°C

-20% of Soluble can be utilized as oil without treatment

Continuous spinning of the modified Soluble

Fig. Mono-hole spinning machine

Modified Soluble is heated to 285 °C

Pitch fiber coming out from the mono-hole

Pitch fibers collected

[°] Rotating drum (16 cm) (rotating at 600 – 1000 rpm)

Carbon fibers: J-RS Soluble

• SEM images of carbon fibers (400x)

Carbon fibers: J-RS Soluble

 SEM cross-sectional images of carbon fibers (3000x)

- Only one hollow was observed from the fibers prepared from Soluble treated by the N₂ purge.
- Several hollows were observed from the fibers prepared from Soluble treated by the air oxidation.

Dispatch of researchers Acceptance of researchers

History of exchange

Year	Number of dispatch researchers	Number x Day (man-day)	Number of accepted researchers	Number x Day (man-day)					
2013	11	55	1	60					
2014	39	311	11	255					
2015	27	249	9	123					
2016	19	197	12	154					
Total	96	812	33	592					

Visit Kyoto University (July. 17 – Aug. 3, 2014)

Training of solvent extraction and carbon fiber preparation

Akita University (June, July, 2014)

Training of solvent desulfurization experiments

Visit CRIEPI

(Feb. 1, 2015)

Plant tour at Kobe Steel (Aug. 4, 2014)

図3 0.1t/d HPC 連続製造試験装置 Fig. 3 0.1t/d HPC Bench scale unit

The Thai members had a opportunity to see the continuous HPC production facility

Solvent Extraction Plant tour at Kobe Steel (April, 2015)

