The First Symposium on JASTIP Disaster Prevention International Cooperation Research (JASTIP-WP4 Symposium)

> March 22-23, 2017, Kihada Hall, Obaku Plaza, Uji Campus, Kyoto University, Japan

Activities in Vietnam Introduction of Vietnam Project ~

Tetsuya Sumi and Yasuhiro Takemon DPRI, Kyoto University

Project activities in Vietnam

29/2/2018

International exchange course

"Conflict Management (Global

Water Issues)" in Vietnam

Data collection at monitoring stations

Turbidity collection at VamNao station

Kyoto University's office at Thuyloi University, Vietnam

Director: Dr. La Vinh Trung

Purposes

- 1. Meeting place for researchers of Thuyloi Univ and Kyoto Univ.
- 2. Research place for PhD students
- 3. Storage of equipment and stationary stuff
- 4. Place for Vietnamese students and researchers to learn the project on Mekong Delta.

Thuyloi University (TLU)

International exchange course "Conflict Management (Global Water Issues)" in Vietnam: 10 days Summer course program

International exchange course "Conflict Management (Global Water Issues)" in Vietnam: 10 days Summer course program

Filed visit to Ship Lock, Tidal Control Thi Nghe Culvert and Mekong Delta

Readings and Report

- The topic of the report is to read, discuss one of the following four topics regarding challenges facing Mekong River Basin with focusing on Vietnam. You will need to select a topic and summarize the current situation problems and How do we find the 18th Camel for the Mekong River?
- You will need to obtain relevant information and data for the presentation, and a short presentation 23rd of July (You will have 15 minutes)
- > The four topics are as following:
 - 1- Climate change
 - 2- Agricultural and irrigation
 - 3- Flooding and Water-related Diseases
 - 4- Mekong River commission and legalization
- Please discuss the following questions:
- 1- What are main problems and challenges?

2- What actions do the countries need to undertake to improve the current situation? to reduce uncertainty about future conditions; to minimize levels of risks in policy development, planning strategies and management of water and related resources

Recommended	Shafiqul Islam, Lawrence E. Susskind [Water Diplomacy: A Negotiated Approach to Managing Complex
references	Water Networks (RFF Press) ISBN:978-1617261039
	Ben Boer, Philip Hirsch, Fleur Johns, Ben Saul, Natalia Scurrah
	[The Mekong: A Socio-legal Approach to River Basin Development] (Routledge) ISBN: 978-1138788459
	Mekong River Commission website, <u>www.mrcmekong.org</u>

Outcome and On-going Works

Outcome

Accepted paper: Kantoush, S., Binh, D. V., Sumi, T., and Trung, L. V: Impact of upstream hydropower dams and climate change on hydrodynamics of Vietnamese Mekong Delta, *Annual Journal of Hydraulic Engineering*, JSCE, Vol. 61, 2017.

On-going steps

1.

- Installing two more instrument: 1 turbidity meter and 1 salinity meter in Vietnamese Mekong Delta
- Analyzing collected and monitored data as well as establish 2D numerical simulation for the whole Vietnamese Mekong Delta
- Preparing manuscripts submitting to some international journals
- Preparing documents to submit to some conferences: (i) River flow 2018 in Lyon, France; (ii) 3rd International symposium on Flash Flood in Oman...

4.

3.

Having International exchange course "Conflict Management (Global Water Issues)" in 09/2017

DPRI Annual Meeting, 2017

STUDY ON THE IMPACTS OF RIVER-DAMMING AND CLIMATE CHANGE ON THE MEKONG DELTA OF VIETNAM

Presenter: Doan Van Binh Supervisors: Prof. Sumi, Prof. Sameh Date: Feb. 2017 Place: Kyoto University – Uji Campus

OBJECTIVES

Objective 2

Impacts of 11 proposed mainstream dams in Thailand, Laos and Cambodia on hydrology of VMD under climate change

First Objective: Impacts of the 6 existing mainstream dams on VMD

Methodology

Results: Chinese dam impact on flood peaks of VMD

Second Objective: IMPACTS OF 11 PROPOSED DAMS ON VMD

Methodology Numerical model simulation under the following scenarios

Scenario	Description of boundary condition	Remark		
Scenario 0 (Baseline)	 Upstream: Discharge hydrograph of 2015 Downstream: Water level stage of 2015 	Without dam and without sea level rise		
Scenario 1	 Upstream: Discharge hydrograph of 2015, considering 11 dams in Laos Downstream: Water level stage of 2015 	With dam and without sea level rise -Jan. – May: -1.9% at TanChau, -2.5% at ChauDoc - Jun. : -0.5% at both TanChau and ChauDoc		
Scenario 2	 Upstream: Discharge hydrograph of 2015, considering 11 dams in Laos Downstream: Water level stage of 2015, considering sea level rise 47 cm 	With dam and with sea level rise -Jan. – May: -1.9% at TanChau, -2.5% at ChauDoc - Jun. : -0.5% at both TanChau and ChauDoc - Water level of 2015 + 47cm (high emission scenario - A1FI – increasing 5.5mm/y) (Doyle et al. 2010)		

Results: Impacts of 11 proposed dams on Q of VMD

Scenario	Discharges in VMD	
11 dams built		
11 dams built + Sear Level Rise		

	Station	TanChau	VamNao	MyThuan	MyTho	ChauDoc	LongXuyen	CanTho	DaiNgai
((Sc1-Sc0)	-63.8	-31.6	-27.0	-9.6	-13.8	-50.6	-50.0	-17.1
	%	-1.9	-2.2	-1.2	-0.5	-2.5	-2.8	-2.9	-3.6
((Sc2-Sc0)	-63.8	-24.1	-34.8	-16.3	-13.8	-213.8	-260.2	-22.2
	%	-1.9	-1.0	-2.8	-2.7	-2.5	-11.6	-14.9	-4.6

Discharges in Hau River decrease more than Tien River

Results: Impacts of 11 proposed dams on H of VMD

Station	TanChau	VamNao	MyThuan	MyTho	ChauDoc	LongXuyen	CanTho	DaiNgai
(Sc2-Sc0)	0.423	0.436	0.456	0.467	0.436	0.452	0.458	0.467
% increase	94.6	127.1	75.5	221.2	139.2	172.6	162	25.7

Water levels in Hau River increase more than Tien River

Based on field measurements and numerical simulation for various scenarios

Conclusions

- 6 Chinese dams caused more tidal influence upstream and diminished normal flood but high flood, where normal flood is extremely important to VMD
- 11 proposed dams will cause severe problems to livelihood of local people in VMD by increasing salinity intrusion and flooding in coastal areas.

Solutions

Chinese dams' owners should inform dam operation schedules to downstream countries in the beginning of a year.

11 dams in Thailand, Laos and Cambodia should have solutions to release as much water downstream as possible

In impacted areas by saltwater: shifting land use: changing from freshwater agriculture to saltwater aquaculture

Future Work

- Investigate sediment load change
- Study on salinity intrusion

Install more turbidity and salinity stations

Conduct field investigations & measurements

2 dimensional numerical simulations

On going works : Equipment installation and monitoring

Turbidity and salinity should be the most basic measures for monitoring changes in water resources situation in the Mekong Delta.

Installation of the turbidity meter

Salinity collection at AnLacTay station

Turbidity collection at VamNao station

One of the most important out come

Good collaboration through intimate communication!

Members of Sumi Lab

Second Objective: Impacts of the 11 proposed dams on VMD

Methodology Setup of numerical model

- 2,551 branches
- 13,429 points
- Cross section: 2010 and 2014

Station	ation VamNao		CanTho					
For Calibration of year 2015								
R ²	0.913	0.936	0.978					
Nash	0.807	0.862	0.913					
For Validation of year 1998								
\mathbb{R}^2	0.877	0.970	0.950					
Nash	0.727	0.912	0.890					

