^{III} JASTIP Symposium "Biomass to Energy, Chemicals and Functional Materials" -4 July, 2017, Thailand Science Park

Bio-Hydrogen

Sumittra Charojrochkul National Metal and Materials Technology Center (MTEC) NSTDA

A Deixing France for National Colones and Technology Conshility

Fuel Cells

Debuies France for National Colones and Technolomy Conshiller

Proton Exchange Membrane Fuel Cell

Ballard fuel cell – 3 generations

www.ballard.com

www.daimler.com

Delaise France for Matingal Colones and Technology Conshility

Toyota Mirai

Energy diversification

 Hydrogen can be made using a wide variety of primary energy sources.

Fun to drive

 Smooth and quiet, with excellent low- and mid-range acceleration characteristic of motor-driven cars

Zero emissions

 Zero emissions of harmful substances when driven

Performance

 Cruising range on par with a conventional gasoline-fueled vehicle; can be refueled in about three minutes.

Can be used as a power supply

Can double as a high capacity power supply during emergencies

http://www.toyotaglobal.com/innovation/environmental_technology/fuelcell_vehi

Sources of hydrogen

- Fossil hydrocarbon natural gas (CH4), LPG, diesel
- Renewable hydrocarbon biogas (CH4)
- Ethanol fermentation, lignocellulosic process
- Electrolysis
- Biological process

Catalyst Development

Determination of hydrogen production yield

Type of fuels	Yield of H ₂ production (%) from the steam reforming at 900°C over						
	Ni/Al ₂ O ₃	Rh/Al ₂ O ₃	CeO ₂	CeO ₂ (HSA)	Ni/CeO ₂	Ce-Ni/Al ₂ O ₃	
Methane	85.9	~100	30.3	54.8	85.4	84.0	
Natural gas	51.3	88.3	45.4	78.9	61.8	59.7	
Biogas	53.7	~100	53.3	81.3	66.7	67.9	
Ethanol	49.5	86.9	41.3	76.4	59.0	59.5	
Methanol	51.1	84.4	40.1	72.5	58.5	54.3	
LPG	40.3	81.8	34.9	70.1	47.8	42.1	

"We reported that CeO₂ (HSA) presents excellent reactivity compared to Ni catalysts but still less than that of noble metal (Rh) catalyst..." *

* N. Laosiripojana and S. Assabumrungrat, "Catalytic steam reforming of ethanol over high surface area CeO₂: The role of CeO₂ as an internal pre-reforming catalyst", Applied Catalysis B: Environmental, 66, (2006), 29-39

Influence of steam/ethanol ratio

The theoretical EMF and electrical efficiency of the SOFC-H⁺ are superior to those of SOFC-O⁼, the actual voltage and power density are much lower due to large resistance of the cell.

W. Jamsak et al, Chemical Engineering Journal 133 (2007) 187-194.

Steam reforming of ethanol

Catalyst	Temperature (°C)	Yield of H ₂ production (%)	BET Surface area (m²/g)	C formation (monolayers)
Ni/CeO ₂ (HSA)	700 800 900 1000	67.3 78.3 82.5 86.9	24	1.79 1.35 1.08 0.82
Ni/CeO ₂ (LSA)	700 800 900 1000	49.7 55.4 61.1 64.2	8.5	3.02 2.41 2.17 2.09
Ni/Al ₂ O ₃	700 800 900 1000	48.1 51.9 57.2 59.8	40	4.97 4.63 4.52 4.22

- Ethanol/steam ratio = 1/3
- Significant amount of C_2H_4 and C_2H_6 were observed from Ni/CeO₂(LSA) and Ni/Al₂O₃
- N. Laosiripojana et al, Applied Catalysis A: General 327 (2007) 180-188.

A Deixing Course for Matingal Colones and Tashardama Courshility

Steam reforming of ethanol with co-fed oxygen

Autothermal reforming of ethanol at 900°C for Ni/CeO₂ (HSA)

N. Laosiripojana et al, Applied Catalysis A: General 327 (2007) 180-188.

Steam reforming of ethanol with co-fed oxygen

Autothermal reforming of ethanol at 900°C for Ni/Al₂O₃

N. Laosiripojana et al, Ap<mark>plied Catalysis</mark> A: General 327 (2007) 180-188.

A Delater France for Mathematical Colones and Technicals on Constalling

Steam reforming of ethanol

 Ni/CeO_2 (HSA) > Ni/CeO_2 (LSA) > Ni/Al_2O_3

Hydrogen yield increases with reforming temperature

Coke formation is reduced when increasing reforming temperature

Great benefits of Ni/CeO₂ (HSA)

- Stability
- Reactivity towards ethanol reforming
- High resistance towards carbon deposition
- Good product selectivities (high redox property of CeO₂)

<mark>N. Laosiripojana et al, Applied Catalysis</mark> A: General 327 (2007) 180-188.

Bioethanol-fueled SOFC system

Distillation + SOFC

- Utilization of condenser duty to preheat incoming bioethanol and cathode recirculation significantly reduce energy demand for reboiler and air heater
- Higher overall electrical efficiency and lower total cost index

W. Jamsak et al. J. Power Sources 187 (2009) 190-203

Bioethanol-fueled SOFC system

- Exhaust gases from stack combust in the afterburner.
- Heat released from SOFC (Q4) and afterburner (Q5) supplied to purification process (Q1), reformer (Q2) and air heater (Q3).

I. Choedkiatsakul et al, Inter J Hydrogen Energy 36 (2011) 5067-5075

Bioethanol-fueled SOFC system

Choedkiatsakul et al, Inter J Hydrogen Energy 36 2011) 5067-5075 At thermally self-sufficient condition (Qnet = 0), this offers max electrical efficiency.

Distillation+SOFC, =34% Pervaporation+SOFC =42%

[low energy requirement due to moderate temperature and pressure operation]*

*ES Fernandez et al, Desalination 2010;250:1053-5

*F Lipnizki, Desalination 2010;250:1067-9

A Debuies France for National Colones and Taskes Jame Conshilts

Hydrogen production from ethan

H₂ production reactor

 H_2 production at 20 l/min ratio $H_2/CO_2+CO = 7/3$

A Deising Found for Matingal Colones and Tashardama Conshility

Hydrogen production from ethano

Hydrogen Production For 1 kW SOFC

A Debuine France for Mational Colones and Technolomy Conshills

Stability of Catalyst

Hydrogen production from ethanol steam reforming over Ni catalysts at 700°C.

WGS catalytic activities of Ni catalyst on various supports

P. Tepamatr et al, ECS Transactions, 68(1), 1207-1217, 2015

Delaine Fours for Mational Colones and Technolomy Conshility

System Integration 1 kW SOFC using biogas as a fuel

Deising Fores for National Colones and Technology Conshility

Materials for Hydrogen production

Porous catalyst support for H₂ production

10 µm

PB30%

 Ni/Al_2O_3 catalyst

Hydrogen production from methane

Temperature (°C)

10 µm

Reforming of CH₄

Steam reforming > dry reforming Calcination in $H_2 > N_2 > air$

C. Chettapongsaphan et al, Applied Catalysis A:

Reforming of CH₄

LSCN=La_{0.8}Sr_{0.2}Cr_{0.9}Ni_{0.1}O₃
LC = LaCrO₃
SR = steam reforming
DR = dry reforming
A = air calcination
H = hydrogen calcination
N = nitrogen calcination
PP=precipitation
SG=sol-gel
SF=surfactant assisted

Steam reforming > dry reforming, Calcination in $H_2 > N_2 > air$ Surfactant assisted > (sol-gel ~ precipitation) Steam reforming LSCN-SF-H is comparable with Ni/Al₂O₃

C. Chettapongsaphan et al, Applied Catalysis A:

A Driving France for National Colonge and Technology Conshilts

Advantages of H₂S over CeO₂ based

H₂S improves the turnover frequencies with CeO₂ ■ H₂S forms rhodium sulfide which is rarely regenerated.

I. Laosiripoiana et al. I. Catalysis 276 (2010) 6-15

Debute Free for Netional Colones and Taska alares Conshiller

Advantages of H₂S over CeO₂ based

 $2CeO_{2}+8H_{2}O+3H_{2}S \leftrightarrow Ce_{2}(SO_{4})_{3}+11H_{2}$ $Ce_{2}(SO_{4})_{3}+4H_{2}O+H_{2}S \leftrightarrow 2Ce(SO_{4})_{2}+5H_{2}$ $2CeO_{2}+H_{2}+H_{2}S \leftrightarrow Ce_{2}O_{2}S+2H_{2}O$

Formation of $Ce(SO_4)_2$ promotes the oxygen storage capacity, lattice oxygen mobility and hence reforming activity BUT Ce_2O_2S reduces both properties and lowers the reforming rate.

Conclusions

- Both ethanol and biogas are feasible to produce hydrogen
- Available resources
- Additional criteria must be considered (supply chain, logistic cost and policy)

Acknowledgements

- Prof. Suttichai Assabumrungrat, Chulalongkorn U.
- Prof. Navadol Laosiripojana, JGSEE
- Assoc.Prof.Jarruwat Charoensuk, KMITL
- Late Asst.Prof.Rapeepong Suwanwarangkul
- Dr. P. Kim-Lohsoontorn, Mahidol U.
- Asst.Prof.Anothai Suksangpanomrung, RCMA
- Asst.Prof.Wanwilai Kraipetch Evans, SWU
- Asst.Prof.Pisanu Tuchinda, SIIT, TU
- Mr Chartsak Chettapongsapan
- Mr Manop Masomtop
- Mr Wittaya Wongklang
- Mr Patiwat Onbhuddha
- Technical support from Materials for Energy Research Unit, MTEC

- Dr Wasana Jamsak
- Ms I. Choedkiatsakul
- Dr Pakpoom Sriromruen
- Late Dr Nitinai Panyabussakul