

Innovative Conversion of Biomass Derivatives to High Value Chemicals by Photocatalysis

Surawut Chuangchote¹ Verawat Champreda² Navadol Laosiripojana³ Takashi Sagawa⁴

E-mail: surawut.chu@kmutt.ac.th

- ¹ Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT).
- ² National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA).
- ³ The Joint Graduate School of Energy and Environment (JGSEE), KMUTT.
- ⁴ Graduate School of Energy Science, Kyoto University.

Development of Photocatalysts

Development of TiO₂ Fabrication with CTAB Surfactant

NS

SEM and FESEM images of TiO₂ photocatalysts synthesized by different concentrations of CTAB

SEM images (30000x) of ZeY, TiO₂ (5%)/ZeY(95%), TiO₂ (15%)/ZeY(85%), TiO₂ (30%)/ZeY(70%), TiO₂ (45%)/ZeY(55%), and TiO₂.

Electrospinning

Electrospinning is a technique to produce the polymer nanofibers from a wide variety of materials and versatile applications. Different methods of electrospinning:

Electrospinning

Experimental setup

Internal factors:

- Type of polymer,
- Type of solvent,
- Solution concentration (viscosity),
- Solution conductivity, etc.

External factors:

- Collecting distance,
- Applied voltage,
- Solution flow rate,
- Ambient temperature, humidity, etc

Balance of Inner/Outer Nozzle End

	SEM Ir	mages	TEM Images		
Nanofibers	PAN PAN/PMMA		PAN/PMMA		
Nozzle	Single nozzle	Coaxial nozzle	Inward	Normal	Outward
Illustration					
As spun nanofiber (Before calcination)	<u>5 μm</u>	<u>5 µт</u>	5 <u>00 nm</u>	5 <u>00 nm</u>	50 <u>0 nm</u>
Carbon Nanofiber (After calcination)	<u>2μm</u>	<u>2 μm</u>	2 <u>00 nm</u>	2 <u>00 nm</u>	2 <u>00 nm</u>

TiO₂ Nanorod Arrays

Biomass Derivative 1: Sugar Conversion

The results of development of TiO₂ fabrication with CTAB surfactant

Zeolites

Zeolites are hydrated aluminosilicate minerals made from interlinked tetrahedral of alumina (AIO_4) and silica (SiO_4).

Advantages of Zeolites

- ✓ Improved selectivity
 ✓ High activity
- Excellent absorption ability

Structure of zeolite A (a) and faujasite-type zeolites X and Y (b) formed by sodalite cages

Basic Zeolite Structure

-AI-0-Si-0-AI-0-Si-0-AI

(Lutz, 2014).

Modification of TiO₂ with Supporters

The results of modification of TiO₂ with zeolite supporter

Photocatalyst	S _{BET} (m²/g)	
ZeY	590.76	
TiO ₂ (5%) /ZeY(95%)	588.36	
TiO ₂ (15%) /ZeY(85%)	524.41	
TiO ₂ (30%) /ZeY(70%)	494.57	
TiO ₂ (45%) /ZeY(55%)	419.44	
TiO ₂	34.38	

Modification of TiO₂ with Supporters

The results of modification of TiO₂ with zeolite supporter

Biomass Derivative 2: Lignin Conversion

Photocatalytic Conversion of Lignin to High-value Products

NSTOA The Joint Graduate School of Energy and Enviror

http://www.psb.ugent.be/bio-energy/313-lignin

Composition of the biomass

Cellulose

Hemicellulose

Effect of kraft lignin concentration on photocatalytic conversion of kraft lignin (reaction conditions: 1g/L of P25, 100/0 v/v of water to ACN and 400 W of UV-lamp).

Photocatalytic activity

hv

TiO₂

Price of High-value Chemicals

Chemicals from glucose conversion

Products	Price (THB)/kg	Applications
Gluconic acid	337	acidity regulator
Arabinose	1685-5055	sweetener
Xylitol	33.7-168.5	sweetener
Formic acid	16.513-18.53	preservative and antibacterial agent, use in cleaning products, dyeing and finishing textiles products, and use in direct formic acid fuel cell (DFAFC)

NS

Chemicals from lignin conversion

Products	Price (THB)/kg	Applications
2-methyl naphtalene	33.7-50.55	textile dyeing, printing and metal surface water treatment and chelating, used in organic synthesis,pesticide, pharmaceutical and dyne intermedite
4-hydroxy-benzaldehyde	~~ /-~~/)	pharmaceutical intermediate, antiallergic agent blood system agent and anesthetic agents
Vanillin	33.7-505.5	synthetic flavor and fragrance
4'-hydroxy-acetophenone	3370	used in the manufacture of medicinal reagent

Biomass Derivative 3: Biomass Pretreatment

Photocatalytic Pretreatment of Biomass

Conclusion

Synthesized Photocatalysts

5/5

The Joint Graduate

NST

References

Papers

- J. Payormhorm, S. Chuangchote, K. Kiatkittipong, S. Chiarakorn, N. Laosiripojana, Xylitol and gluconic acid productions via photocatalytic-glucose conversion using TiO₂ fabricated by surfactant-assisted techniques: Effects of structural and textural properties, Materials Chemistry and Physics, 2017, 196, 29-36.
- N. Kaerkitcha, S. Chuangchote, and T. Sagawa (2016) "Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends," *Nanoscale Research Letters*, 11(1), 1-9.
- W. Arpavate, S. Chuangchote, N. Laosiripojana, J. Wootthikanokkhan, and T. Sagawa (2016) "ZnO Nanorod Arrays Fabricated by Hydrothermal Method Using Different Thicknesses of Seed Layers for Applications in Hybrid Photovoltaic Cells," *Sensors and Materials*, 28(5), 403-408.
- K. Roongraun, N. Laosiripojana, S. Chuangchote (2016) "Development of Photocatalytic Conversion of Glucose to Value-added Chemicals by Supported-TiO₂ Photocatalysts," *Applied Mechanics and Materials*, 839, 39-43.
- M. Wongaree, S. Chiarakorn, S. Chuangchote, and T. Sagawa (2016) "Photocatalytic Performance of Electrospun CNT/TiO₂ Nanofibers in a Simulated Air Purifier under Visible Light Irradiation," *Environmental Science and Pollution Research*, 23, 21395-21406.
 Patent
- Xylitol Production from Glucose and Xylose Using Titanium Dioxide Photocatalyst," Patent Submission No. 1401007893.