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About	SATREPS	

“Strengthening	S&T	cooperation	with	developing	
countries	for	resolving	the	global	issues”

Global issues need international collaboration.



Aims	of	SATREPS

Practical	Utilization/Implementation	
of	research	outcomes

～Expecting	outcomes	to	make	a	real	contribution	to	society	～
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1.	Enhancing	Cooperation	in	Science	&	Technology		
     ～Building	win-win	relationships	between	Japan	and	developing	countries～	

2.	New	Technology,	New	Knowledge,	Innovations	
     ～ Addressing	global	issues	and	advancing	science ～	

3.	Capacity	Development	
     ～ Boosting	self-reliant	R&D	capacity	and	sustainable	research				
													systems,	training	human	resources	and	coordinating	networking				
													between	researchers	～



Science	&	Technology	×
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Official	Development	
	Assistance（ODA）

Science and Technology 
•S&T Competitive Fund, Promoting STI

International Cooperation 
•ODA, Official Development Assistance 

Meeting Global Needs 
•Resolving global issues and contributing to the 
science and technology community 

Meeting Local Needs 
•Capacity development to address issues emerging 
as local needs in developing countries

Japan's Capabilities 
•World-leading technology, proven research 
capacity 
•Soft power 

Developing Countries' 
Capabilities 
•Direct experience, knowledge, and data needed for 
research on global issues 
•Potential to contribute to the global economy 
through new markets and industries

×

×

×



International	Joint	Research

MOFA,	
JICA

MEXT,	
JST,	AMED

collaboration

Competitive 
 Fund

Technical 
Cooperation

MEXT: Ministry of Education, Culture, Sports, S&T  
JST: Japan Science and Technology Agency  
AMED: Japan Agency for Medical research and Development 
MOFA: Ministry of Foreign Affairs 
JICA: Japan International Cooperation Agency 

Japan Counterpart  Country
Research  

Institutions
Research 

Institutions 
Research 

Partnership

SATREPS	program	structure

Research	Period		:		3-5	years	
Research	Funding	
	Approx.	JPY96	million	/	project	/	year	(USD*	872,000)	
		Funding	split:		JST:	Approx.	JPY36	million	(USD*	327,000)	
																		　							JICA:	Max.	JPY60	million	(USD*	545,000)
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Research	Areas

4	fields		5	areas

□Environment	and	Energy
・Global-scale	Environmental	Issues

・Low-carbon	Society/energy

Climate	change	mitigation	&	adaptation,	Safe	water	supply,	Biodiversity	conservation..

Biomass	energy,	Energy	efficiency,	Renewable	energy..

□Bioresource	Utilization
Breeding	and	cultivation	technology,	Bioresource	management..

□Disaster	Prevention	and	Mitigation
Natural	disaster	mechanisms	(Earthquakes,	Volcanic..),	Disaster	mitigation..

□Infectious	Diseases	Control
Diagnostic	tool,	Vaccines,	Therapeutic	products	development		
(Avian	influenza,	HIV/AIDS,	Dengue	fever..)
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FY2015～　JST → AMED 
 ※AMED：Japan Agency for Medical research and　Development
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SATREPS’s contribution for SDGs 
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  Global Energy Consumption
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• We are consuming a huge amount of energy.   
• The CO2 emission due to the combustion of fossil fuels causes 

the global warming.



  Carbon Cycle
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  Mitigation of Global Warming for Sustainable Society
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• shift to low-carbon fuel 
• renewable energy such as solar, wind, biomass

• heat recovery and heat cascading 
• high-efficient equipment 
• energy efficient utilization

• capturing waste CO2 from power plants, transporting it to a 
storage site, and geological sequestration.

Carbon Capture and Storage 
(CCS)

Energy Saving

Renewable Energy



  

Ø CCS process consists of CO2 recovery section and storage section. 

Ø In the CCS process, large amount energy consumes in CO2 capture 
section in which consume 4.1 GJ/t-CO2 using a chemical absorption 
process (ex. Monoethanol amine, MEA) 

Ø As a result of increasing the energy consumption, the power 
generation efficiency is decrease by 8-10 point. 

Figure. CCS process

Carbon Capture Storage (CCS)

Table. Carbon footprint in power generation section [Gt-C/year]	     
※In the parentheses, these value  indicate  the percentage for coal emission. 
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CCS contributes one-sixth of total CO2 emission reductions required in 2050.

14% of the cumulative emissions reductions through 2050 against a business-
as-usual scenario (6DS)



  Renewable energy
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  Terrestrial Energy Potential
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A large amount of solar and wind energy use might cause the climate change.  

More efficient use of bioenergy is essential.

Energy saving technology
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  Exergy, Exergy Rate

17

Exergy Ex

Exergy rate ε

ε = exergy
enthalpy

l rate of energy to energy(enthalpy) 
l a measure of energy quality

l the maximum useful work obtainable 
as a system comes into equilibrium 
with environment Te

m
pe
ra
tu
re

Entropy

T

T0

S0 S

Exergy

Anargy

Energy
ΔH = H − H0 = Ex +T0 S − S0( )

Exergy Anergy

ε = 1−T0

S − S0( )
H − H0( )

ε = 1−
T0

T

ε =
T −T0

T +T0

latent heat
reaction heat

sensible heat

Exergy

Anergy



  Exergy Destruction in Energy Conversion Process
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l Energy is conserved.（-ΔH=const.) 
l Exergy destruction takes place due to the irreversibility 
l Exergy is transformed into anergy

Exergy Anergy

−ΔH = Ex + An = Ex −T0Sgen( )+ An +T0Sgen( )

Exloss = T0Sgen
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  Exergy Destruction in Combustion Process

•heat generation without fuel consumption •reduction of exergy loss in fuel consumption

Exergy destruction occurs in the combustion process because exergy rate of 
heat is lower than that of fuel

It is most essential for the energy saving and efficient utilization to reduce the 
exegy loss in combustion processes
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(exergy, anergy)

CH4  890 

(819, 71)

heat  890

exergy loss

427

(392, 498)

600°C

ε=0.44

ε=0.92

Combustion is an energy conversion process from chemical energy with 
higher exergy rate to thermal energy with lower exergy rate



  Energy Production and Utilization

In the initial stage of energy production, chemical energy is converted to heat through 
combustion, in which a large exergy destruction takes place.   

Heat Use Power Use Material Production
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  Heat Recycling for Heating and Cooling System

Heat	Generacon	Module

Heacng	and	Cooling	Cycle	
Process	Module

Heat	Removal	Module
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• Heat input is equal to heat output. 
• No exergy destruction takes place in  the heating and cooling cycle process. 
• Exergy destruction takes place only in  the heat generation and heat removal modules.



  Self-heat Recovery vs Self-heat Recuperation
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  Application of Self-heat Recuperation Technology to Distillation

Self-heat is recycled by adding work 
No adding heat

Heat supplied to reboiler is  
wasted in the condenser 

Self-heat recuperative distillationConventional distillation

About 40% of energy consumption in petrochemical industry is due to the distillation 

Energy consumption is reduced to 15% (85% saving)
23Kansha, Yasuki, Naoki Tsuru, Chihiro Fushimi and Atsushi Tsutsumi, Integrated Process Module for Distillation Processes Based on Self-Heat Recuperation Technology, 

J. Chem. Eng. Jpn, 43(6), 502-507, (2010)
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  Pilot Plant of Self-Heat Recuperative Bioethanol Distillation System

Nippon Steel Sumikin Engineering, Kitakyushu Environmental Technology Center

The energy required for distillation is reduced to  about 14% of the 
conventional counter parts (86% energy saving)
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Steam Utility Power 
(compressor)

%

Heat 
Recovery

4.6 MJ/L-
EtOH ― 100

SHR  
(Simulation)

― 0.77 MJ/L-
EtOH

17 
(50)

SHR  
(Pilot plant)

― 0.65 MJ/L-
EtOH

14 
(43)

• () is calculated by Steam Utility = Power ×3 
• Compression efficiency was estimated to 50% in 
simulation, but it was 58% in Pilot plant. 

Feed rate: 400 kg/h 
Feed: 10wt% ethanol 
Distillate: 90wt% ethanol



  Self-Heat Recuperative Biomass Drying
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  Self-heat recuperation is adaptable for various unit operation
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lDistillation 

lDesulfurization Process 

lCryogenic Air Separation 

lThermal Desalination  

lCO2 Chemical Absorption 

lDrying Process 

lMethanol Synthesis 

lBDF production 

lPSA (pressure swing absorption)

86% energy saving（reduced to 14%) 

75% energy saving（reduced to 25%) 

40％ energy saving 

78% energy saving 

68% energy saving 
86～92% energy saving 

85% energy saving 
80% energy saving 

70% energy saving



  Green Innovation: Paradigm Shift in the Heat Utilization

Combustion Heating Heat Circulation by Self-heat Recuperation

Energy Cascading Exergy Recuperation

l Heat is generated by the combustion of fuels, 
leading to a large exergy destruction. 

l Heat is recovered and reused at lower 
temperature. But, heat addition is required.  

l Large energy consumption

l No more combustion! 
l Heat can be recuperated by adiabatic 

compression and be recycled with no addition 
of heat.  

l Exergy loss is minimized to the minimum work 
for heat circulation 
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Self-heat recuperation applicable to all thermal processes

Energy consumption can be reduced to 1/5～1/25 (1/2～1/10)

No combustion leads to zero emission of CO2



  SOFC, Gas Turbine, Steam Turbine

SOFC Gas Turbine Steam Turbine
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• In gas turbine and steam turbine power generation the exergy destruction takes 
place mainly during combustion. 

• The exergy loss of SOFC is very small (3%) because of no combustion.   
• The effective utilization of waste heat from SOFC is essential.



  Exergy Recuperative Gasification Integrated with SOFC
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endothermic exothermic

● Stable SOFC performance (no carbon deposition issues) 
● No air cooling of SOFC – only pure O2 is fed to cathode 
● Gas turbine can be eliminated

A. Tsutsumi, Chem. Eng., 75 (2011) 578-581　(in Japanese)
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  Integrated Exergy Recuperative Biomass Gasification SOFC System
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• In the gasification process waste heat from SOFC is recuperated to produce 
hydrogen (130%) because of endothermic biomass gasification, resulting in high 
power generation efficiency (72%). 

• Gas and steam turbines can be eliminated from power generation system.



  Super Integrated Biomass Gasification-SOFC
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  Green Innovation: Paradigm Shift in the Power Generation

Heat Generation by Combustion Exergy Recuperative Hydrogen Production

Heat Engine Fuel Cell

l Heat for heat engine is generated by the 
combustion of fuels, leading to a large exergy 
destruction. 

l There is a limit to the power generation efficiency. 

l No more combustion!  
l Waste heat of fuel cell can be recuperated to 

use for the endothermic reaction (hydrogen 
production).    

l High power generation efficiency over Carnot 
efficiency is expected.

32

There is no limit of Carnot efficiency

High power generation efficiency is expected (60-80%)

GHG can be reduced



  Green Innovation: Paradigm Shift in Energy Science and Technology
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• A huge amount of fossil energy is converted to thermal energy through combustion.   
• In the combustion process a considerable exergy destruction takes place, in which the 

exergy is transformed to anergy.   
• Although energy is conserved, all of energy is thrown away.  

the energy-throwaway society

sustainable  society

low-carbon society

• No more combustion 
• Energy can be recycled by the exergy recuperation to minimize exergy loss, leading to 

the drastic reduction of energy consumption 

To reduce the energy consumption the technological 
innovation for energy utilization is essential.  

Self-heat Recuperation Technology

Highly Efficient Power Generation

Material and Energy Coproduction



The End


