Assessing flood risk globally using an improved country-based risk index

UNESCO-JASTIP Joint Symposium at Manila November 15, 2017

Yoshiyuki Imamura

Center for Research and Application of Satellite Remote Sensing (CRASS)

Yamaguchi University, Japan

Introduction

Increasing water disasters

Number of water-related disasters (1980-2009)

Water-related disasters are increasing. Especially damage in Asia is serious.

出典) ICHARM HP(http://kankyorenrakukai.org/symposium_12/pdf/koen_7.pdf)(Made by ICHARM database from EM-DAT)

Why do we need to assess flood risk?

Increasing flood damage

ICHARM developed water-related risk assessment indicators (Asian Water Development Outlook(AWDO) issued by Asian Development Bank (ADB))

<u>Assessing and</u> <u>quantifying</u> flood risk of <u>countries</u> Easy to understand by policy makers and general public

Guiding policy makers and planners for reducing flood damage and sustainable development

AWDO (Asian Water Development Outlook)

• • Five key dimensions on water security
KD5: Resilience to water-related disasters

(Resilience)

Reducing water-related risks and minimizing impacts of disasters

Countries with larger GDP per capita have more resilience to water-related disasters.

Economic development increases resilience to waterrelated disasters, which supports sustainable development.

Focusing on floods

XAWDO : evaluated water-related disasters (Flood, Drought, Storm surge).

Affected population (1980-2013)

Ref) ICHARM HP (<u>http://kankyorenrakukai.org/symposium 12/pdf/koen 7.pdf</u>)

Objectives

AWDO

- Limitation on global datasets.
- Only in the Asia-Pacific countries.

Objectives

(1) Improving flood risk index

• • • Updating data

+ Factoring in more factors

⁽²⁾Applying from Asia-Pacific countries to the world

• Flood damage is increasing in other than regions as well.

Methodology

How the Flood Risk Index is computed

- Indicators
 - The Flood Risk Index is computed by five indicators.

<u>Subindicators</u>

An indicator is calculated by subindicators.

Ref) N. Waldyanatha (https://www.slideshare.net/waldyanatha/overview-em-commnuwandayone)

How to compute the Flood Risk Index

How to compute the flood risk index from five indicators

Flood Risk Index = $\frac{\text{Hazard} \times \text{Exposure} \times \text{Vulnerability}}{\text{Soft Coping Capacity} \times \text{Hard Coping Capacity}}$

Indicators to increase risk

- Hazard : <u>Magnitude of natural phenomena</u> that cause floods
- Exposure : Scale of people or areas exposed
- Vulnerability : <u>Susceptibility</u> to the damaging effects of floods Indicators to reduce risk
- Hard Coping Capacity : Ability to manage flood disasters by <u>structural measures</u>
- Soft Coping Capacity : Ability to manage flood disasters by <u>non-</u> structural measures

How to calculate a subindicator

e.g. Maximum precipitation (weekly average)

(Subindicator) = $\frac{subject \ country-minimum \ country}{maximum \ country-minimum \ country}$ $= \frac{246 \text{mm} - 40 \text{mm}}{889 \text{mm} - 40 \text{mm}} = 0.24$

e.g. Subject country: Japan, 246mm, Maximum country: Papua New Guinea 889m, Minimum country: Mongolia, 40mm, The subindicator is calculated as 0.24.

XAn indicator is summing up of subindicators

Indicators and Subindicators

Indicators and Subindicators			
Indicator	Subindicator	Indicator	Subindicator
Hazard	Maximum precipitation (weekly average)	Hard Coping Capacity	GDP per land area
	Cyclone proneness		
	Frequency of heavey rainfall (more than 100mm/day)		Total water storage capacity per land area
	Maximum precipitation (monthly average)		Road pavement rate
	Ratio of the maximum precipitation of	Soft Coping Capacity	Literacy rate
	monthly average to the minimum		Enrollment rate
	Maximum precipitation of monthly average/Annual average precipitation		Number of television receivers
Exposure	Population density		Number of mobile phone
	Urban population growth rate		owners
	Population growth rate		Percentage of GDS in GDP
	Inland water area		
	Waterway length		Internet users
Vulnerability	Corruption perception index		Public medical expenditure
	Percentage of daily consumption less than 1\$	Black: Subindicators used in AWDO Red: New subindicators	
	Official development assistance ratio		
	Deforestation rate		
	Infant mortality rate		
	Unhealthy life		
	Gini coefficient		

Results (Asia-Pacific countries)

12

Flood Risk Index and five indicators

"positive" with increase factor ,"negative" with decrease factor.

 \rightarrow The <u>subindicators</u> used in the study <u>are reasonable</u>.

Flood Risk Index (146 countries)

<u>Countries near the equator</u> and in <u>Africa</u> have high Flood Index.

- • High risk : Central Africa, Pacific countries
- • Low risk : Developed countries, such as Japan, Australia

GDP per capita and flood risk index

Africa is the highest flood risk region \Rightarrow All 5 indicators increase risk highly

Conclusion

• Developed the flood risk index that visualizes causes of risk and contribute to national policy in mitigating damage.

• Applied the developed index to 146 countries globally and illustrated features of countries and regions.

Way forward

Utilizing remote sensing data to complement global datasets

- \leftarrow global coverage, updating
- e.g. GSMaP for precipitation

CRASS: Divisions

The future network regarding the usage of satellite data, i.e., research and human development. YU will cooperate with other universities and research institutions. In addition, we will accelerate and expand international cooperation.

Activities and Network of CRASS

